Local Boosting of Decision Stumps for Regression and Classification Problems
نویسندگان
چکیده
Numerous data mining problems involve an investigation of associations between features in heterogeneous datasets, where different prediction models can be more suitable for different regions. We propose a technique of boosting localized weak learners; rather than having constant weights attached to each learner (as in standard boosting approaches), we allow weights to be functions over the input domain. In order to find out these functions, we recognize local regions having similar characteristics and then build local experts on each of these regions describing the association between the data characteristics and the target value. We performed a comparison with other well known combining methods on standard classification and regression benchmark datasets using decision stump as based learner, and the proposed technique produced the most accurate results.
منابع مشابه
Introducing fuzzy decision stumps in boosting through the notion of neighborhood
This paper presents a novel approach to the weak classifier selection based on the GentleBoost framework. We include explicitly the notion of neighborhood in one of the most common weak learner in boosting, the decision stumps. The availability of neighboring points adds a new parameter to the decision stump, the feature set (i.e. neighborhood), and turns the single branch selection of the deci...
متن کاملObtaining Calibrated Probabilities from Boosting
Boosted decision trees typically yield good accuracy, precision, and ROC area. However, because the outputs from boosting are not well calibrated posterior probabilities, boosting yields poor squared error and cross-entropy. We empirically demonstrate why AdaBoost predicts distorted probabilities and examine three calibration methods for correcting this distortion: Platt Scaling, Isotonic Regre...
متن کاملA Boosting Algorithm for Classification of Semi-Structured Text
The focus of research in text classification has expanded from simple topic identification to more challenging tasks such as opinion/modality identification. Unfortunately, the latter goals exceed the ability of the traditional bag-of-word representation approach, and a richer, more structural representation is required. Accordingly, learning algorithms must be created that can handle the struc...
متن کاملBoosting recombined weak classifiers
Boosting is a set of methods for the construction of classifier ensembles. The differential feature of these methods is that they allow to obtain a strong classifier from the combination of weak classifiers. Therefore, it is possible to use boosting methods with very simple base classifiers. One of the most simple classifiers are decision stumps, decision trees with only one decision node. This...
متن کاملAn Application of Boosting to Graph Classification
This paper presents an application of Boosting for classifying labeled graphs, general structures for modeling a number of real-world data, such as chemical compounds, natural language texts, and bio sequences. The proposal consists of i) decision stumps that use subgraph as features, and ii) a Boosting algorithm in which subgraph-based decision stumps are used as weak learners. We also discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 1 شماره
صفحات -
تاریخ انتشار 2006